The ability to jointly learn from multiple modalities, such as text, audio, and visual data, is a defining feature of intelligent systems. While there have been promising advances in designing neural networks to harness multimodal data, the enormous success of data augmentation currently remains limited to single-modality tasks like image classification. Indeed, it is particularly difficult to augment each modality while preserving the overall semantic structure of the data; for example, a caption may no longer be a good description of an image after standard augmentations have been applied, such as translation. Moreover, it is challenging to specify reasonable transformations that are not tailored to a particular modality. In this paper, we introduce LeMDA, Learning Multimodal Data Augmentation, an easy-to-use method that automatically learns to jointly augment multimodal data in feature space, with no constraints on the identities of the modalities or the relationship between modalities. We show that LeMDA can (1) profoundly improve the performance of multimodal deep learning architectures, (2) apply to combinations of modalities that have not been previously considered, and (3) achieve state-of-the-art results on a wide range of applications comprised of image, text, and tabular data.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Data-Free Class Incremental Learning (DFCIL) aims to sequentially learn tasks with access only to data from the current one. DFCIL is of interest because it mitigates concerns about privacy and long-term storage of data, while at the same time alleviating the problem of catastrophic forgetting in incremental learning. In this work, we introduce robust saliency guidance for DFCIL and propose a new framework, which we call RObust Saliency Supervision (ROSS), for mitigating the negative effect of saliency drift. Firstly, we use a teacher-student architecture leveraging low-level tasks to supervise the model with global saliency. We also apply boundary-guided saliency to protect it from drifting across object boundaries at intermediate layers. Finally, we introduce a module for injecting and recovering saliency noise to increase robustness of saliency preservation. Our experiments demonstrate that our method can retain better saliency maps across tasks and achieve state-of-the-art results on the CIFAR-100, Tiny-ImageNet and ImageNet-Subset DFCIL benchmarks. Code will be made publicly available.
translated by 谷歌翻译
Recent research in clustering face embeddings has found that unsupervised, shallow, heuristic-based methods -- including $k$-means and hierarchical agglomerative clustering -- underperform supervised, deep, inductive methods. While the reported improvements are indeed impressive, experiments are mostly limited to face datasets, where the clustered embeddings are highly discriminative or well-separated by class (Recall@1 above 90% and often nearing ceiling), and the experimental methodology seemingly favors the deep methods. We conduct a large-scale empirical study of 17 clustering methods across three datasets and obtain several robust findings. Notably, deep methods are surprisingly fragile for embeddings with more uncertainty, where they match or even perform worse than shallow, heuristic-based methods. When embeddings are highly discriminative, deep methods do outperform the baselines, consistent with past results, but the margin between methods is much smaller than previously reported. We believe our benchmarks broaden the scope of supervised clustering methods beyond the face domain and can serve as a foundation on which these methods could be improved. To enable reproducibility, we include all necessary details in the appendices, and plan to release the code.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
在本文中,我们考虑了通用视觉对象计数的问题,其目的是开发一种计算模型,用于使用任意数量的“示例”,即零射击或几次计数来计算任意语义类别的对象数量。为此,我们做出以下四个贡献:(1)我们引入了一种基于变压器的新型架构,用于广义视觉对象计数,称为计数变压器(乡村),该架构明确捕获图像贴片或给定的“示例”之间的相似性,通过注意机制;(2)我们采用了两阶段的训练制度,首先通过自我监督的学习预先培训模型,然后进行监督的微调;(3)我们提出了一个简单,可扩展的管道,以合成合成用大量实例或不同语义类别的训练图像明确迫使模型使用给定的“示例”;(4)我们对大规模计数基准的彻底消融研究,例如FSC-147,并在零和少数设置上展示了最先进的性能。
translated by 谷歌翻译
我们根据二阶Langevin动力学的集合近似提出了一种采样方法。对数目标密度的附加辅助动量变量中附加了二次项,并引入了阻尼驱动的汉密尔顿动力学。所得的随机微分方程对于Gibbs度量不变,而目标坐标的边际坐标。根据动力学定律,基于协方差的预处理不会改变此不变性属性,并且被引入以加速融合到吉布斯度量。可以通过合奏方法近似产生的平均场动力学。这导致无梯度和仿射不变的随机动力学系统。数值结果证明了其作为贝叶斯反问题中数值采样器的基础的潜力。
translated by 谷歌翻译
在这项工作中,我们提出了一个新颖的观点,以解决贴片正确性评估的问题:正确的贴片实现了“答案”对越野车行为提出的问题的变化。具体而言,我们将贴片正确性评估变成一个问题回答问题。为了解决这个问题,我们的直觉是,自然语言处理可以提供必要的表示和模型来评估错误(问题)和补丁(答案)之间的语义相关性。具体而言,我们认为是输入错误报告以及生成的补丁的自然语言描述。我们的方法,Quatrain,首先考虑了最先进的消息生成模型,以生成与每个生成的补丁相关的相关输入。然后,我们利用神经网络体系结构来学习错误报告和提交消息之间的语义相关性。针对三个错误数据集生成的9135个补丁的大数据集(缺陷4J,Bugs.s.s.jar和Bears)的实验表明,Quatrain可以在预测补丁的正确性时达到0.886的AUC,并在过滤62%的62%错误的补丁时召回93%正确的补丁。我们的实验结果进一步证明了投入质量对预测性能的影响。我们进一步执行实验,以强调该模型确实了解了错误报告与预测的代码更改描述之间的关系。最后,我们与先前的工作进行比较,并讨论我们方法的好处。
translated by 谷歌翻译
传统的视听模型具有独立的音频和视频分支。我们设计了一个统一的音频和视频处理模型,称为统一音频 - 视听模型(UAVM)。在本文中,我们描述了UAVM,报告其在VGGSOUND上的新最新音频事件分类精度为65.8%,并描述模型的有趣属性。
translated by 谷歌翻译